
We present a stochastic model for the spread of small-
pox after a small number of index cases are introduced into
a susceptible population. The model describes a branching
process for the spread of the infection and the effects of
intervention measures. We discuss scenarios in which ring
vaccination of direct contacts of infected persons is suffi-
cient to contain an epidemic. Ring vaccination can be suc-
cessful if infectious cases are rapidly diagnosed. However,
because of the inherent stochastic nature of epidemic out-
breaks, both the size and duration of contained outbreaks
are highly variable. Intervention requirements depend on
the basic reproduction number (R0), for which different esti-
mates exist. When faced with the decision of whether to rely
on ring vaccination, the public health community should be
aware that an epidemic might take time to subside even for
an eventually successful intervention strategy. 

Recently, concerns about a bioterror attack with the
smallpox virus or other infectious disease agents have

risen (1,2). While new vaccines with fewer adverse conse-
quences are being developed (3), the existing vaccines,
which have potential side effects and may be lethal, are the
only vaccines available (4,5). In the United States during
the recent voluntary smallpox vaccination program, a lim-
ited number of healthcare workers volunteered for vacci-
nation because of the risks associated with vaccination and
the low for infection (6). If an outbreak occurs, vaccina-
tion strategies include ring vaccination around diagnosed
cases of smallpox or a mass vaccination to begin as soon
as the first cases are diagnosed. Without natural smallpox
infections, practical experience with ring vaccination
against smallpox cannot be gained; accounts of the vacci-
nation programs that eradicated smallpox in the 1970s are
the only source of information (7). Combined with infor-
mation collected during the last decades of smallpox cir-
culation, mathematical modeling offers a tool to explore
various vaccination scenarios if an outbreak occurs
(8–15).

We investigated which conditions are the best for effec-
tive use of ring vaccination, a strategy in which direct con-
tacts of diagnosed cases are identified and vaccinated. We
also investigated whether monitoring contacts contributes
to the success of ring vaccination. We used a stochastic
model that distinguished between close and casual con-
tacts to explore the variability in the number of infected
persons during an outbreak, and the time until the outbreak
is over. We derived expressions for the basic reproduction
number (R0) and the effective reproduction number (Rυ).
We investigated how effectiveness of ring vaccination
depends on the time until diagnosis of a symptomatic case,
the time to identify and vaccinate contacts in the close con-
tact and casual contact ring, and the vaccination coverage
required to contain an epidemic. 

Methods
The model describes the number of infected persons

after one or more index cases are introduced. It simulates
a stochastic process in which every infected person gener-
ates a number of new infections according to a given prob-
ability distribution. This process implies that contacts of
different infected persons are independent of each other
and that no saturation of the incidence occurs at higher
prevalence. The model is applicable for the first few gen-
erations of infection, if the outbreak goes unchecked, and
for the complete outbreak if it is contained. We summarize
the main features of the model; the formal model definition
is given in the appendix. 

Course of Infection and Transmission
The noninfectious state (incubation period plus prodro-

mal phase) lasts 12–15 days (7,16,17) with specified prob-
abilities per day of moving to the infectious state. The
assumption that infectivity during the prodromal phase is
negligible is supported by a recently published statistical
analysis of outbreak data (16). The duration of the infec-
tious state DI is 14 days (7,16,18), with variable infectious-
ness during that time (13,19,8). The probability of
transmission per contact pτ , where τ denotes the day of the
infectious period, is high at the beginning and low at the
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end of the infectious period (Figure 1A). At the end of the
infectious period, a person either recovers or dies. The
case-fatality rate is 30% (14), which is an average value for
the case-fatality rate of variola major. 

Transmission takes place in two rings of contacts: 1)
household and other close contacts, and 2) more casual
face-to-face contacts. We assumed that in the close contact
ring the probability of transmission is five times higher
than in the casual contact ring (g = 0.2). The number of
contacts on day τ of the infectious period in the close con-
tact ring follows a Poisson distribution with mean µτ

(1), and
in the casual contact ring this number follows a a negative
binomial distribution with mean µτ

(2). The values (µτ
(1) = 2

and µτ
(2) = 14.9) were chosen such that the total number of

contacts per day was comparable to numbers observed in
empirical studies (20) (Figure 1B). For every contact, the
event of transmission is determined by the infectiousness
by day of the infectious period. 

Most people can be infected again, and smallpox can
develop 10–20 years after vaccination (21,22). While
residual immunity might lower the case-fatality rate, it
might also lead to a later diagnosis for infected persons
because disease symptoms are milder. An infection with
milder symptoms is probably less infectious, but an infec-
tious person might have more contacts with others because
he or she feels less impaired by disease symptoms. Hence,
the net effects of residual immunity are difficult to assess.
We assumed that all persons are equally susceptible, and
that no protective immunity remains in the population
from previous vaccination. 

The basic reproduction number R0 describes the aver-
age number of secondary cases produced from contact
with an infected person during the infectious period and
without intervention. The number can be computed as the
sum of the reproduction numbers in the close contact and
casual contact ring

For the baseline parameter values given in the Table, R0 =
5.23, which, when broken down by rings of contacts, gives
R0

(1)=2.1 and R0
(2)=3.3, i.e., 40.2% of all transmissions

take place in the close contact ring. We use the parameter a1
in the function describing the transmission probability
(Table) to vary the basic reproduction number, i.e., if we
want to simulate an outbreak under the assumption that R0
is 5, we chose a1 accordingly. In the literature, the estimates
given for R0 vary between 3–6 (9,10,23) and 10–20 (1,14). 

Ring Vaccination
Ring vaccination in the model includes complete isola-

tion of symptomatic patients with diagnosed cases of
smallpox and vaccination of (some or) all contacts of the
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Figure 1. A, the transmission probability per contact by day of the
infectious period; B, the probability distribution of the number of
contacts with susceptible persons per day; C, the probability of
remaining an undiagnosed, but infectious, case by day of the
infectious period; and D, the mean (solid line) and the 2.5% and
97.5% percentiles (dotted lines) of the number of infected persons
for 500 simulation runs for an epidemic without any intervention
after the introduction of one index case at the beginning of this
incubation period at t = 0. 
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diagnosed case-patient. In our baseline scenario, we
assumed that vaccinated contacts are not isolated after vac-
cination and may therefore transmit the infection to others
if they become infectious. In addition, we enhance the
baseline intervention by including monitoring of identified
contacts. The effectiveness of the intervention therefore is
determined by the probability of diagnosis per day of the
infectious period, the time needed to identify contacts of
the close contact and casual contact ring, the vaccination
coverage in the close contact and the casual contact ring,
and whether contacts are monitored. Some of those param-
eters (speed of diagnosis and time to identifying contacts)
differ between the first index case in the population and

cases occurring later in the epidemic. In Figure 2, the tim-
ing of the key events in the chain of transmission and inter-
vention is shown schematically. The index patient can
cause new cases of infection between the beginning of the
infectious period until diagnosis and isolation. For a sec-
ondary case, vaccination has to take place within 4 days
after infection (14) to prevent disease. 

We denote with δτ the probability of diagnosis on day τ
of the infectious period for those persons who have not
been diagnosed before. From those probabilities, one can
derive the probability that an infectious person is not yet
diagnosed on day τ of his or her infectious period (Figure
1C). By υτ

(i), we denote the probability that a contact in
ring i (i = 1 or 2), who was infected on day τ of the index
patient’s infectious period, will be vaccinated within 4
days of being infected. In the appendix, υτ depends on the
diagnosis probabilities, the time needed for contact trac-
ing, and the vaccination coverage. Throughout, we assume
that the vaccine efficacy is 100%. We can now determine
an effective reproduction number Rυ that describes the
number of secondary cases caused by an index patient in a
situation with intervention: 

A special strategy included in this formula is an
intervention where only case isolation is performed
without vaccination of contacts. The vaccination coverage
c(i) is set to zero. Equivalently, it describes the situation
that no window period exists (24). The reproduction
number can then be calculated as

If vaccination is ineffective, but contacts are monitored,
the monitoring will have the same effect on R0 as an effec-
tive vaccination, because the contacts will not be able to
disseminate the virus any further (assuming a fully effec-
tive monitoring). Therefore, Rυ can be computed with the
formula including vaccination, where the window period is
now set to w = 15, of the full duration of the infectious
period. This assumption means that regardless of when the
index patient’s condition is diagnosed, contacts can effec-
tively be excluded from further transmission. If monitoring
of contacts is not 100% effective, the parameter c(i) for the
coverage can be used to express the extent of successful
monitoring. 

The outbreak can be controlled if Rυ < 1. In the Table,
the model parameters and their baseline values are listed.
In the Appendix, the formal model definition is given. 
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Table. The baseline parameter values 
Model parameter Notation Baseline value 
Course of the infection   

Maximum duration 
latent period 

DE 15 d 

Probability of 
transition to infectious 
state on day τ of the 
latent period 

γτ , τ=1,...,DE 0.0 for τ = 1,...,12 
0.3 for τ = 13 
0.6 for τ = 14 
1.0 for τ = 15 

Duration infectious 
period 

DI 14 days 

Case-fatality rate f 0.3 
Transmission 
probability per contact 

pτ ( )ττ 2
1

aea −  
with a1 = 0.27, a2 = 0.5

Ratio of 
infectiousness of 
casual contact and 
close contact ring 

g 0.2 

Contacts   
Mean number of 
contacts in close 
contact ring (Poisson 
distribution) 

µτ
 (1) 2 

Mean number of 
contacts in the casual 
contact ring (negative 
binomial distribution) 

µτ
 (2) 14.9 (sd 8.4) 

 
NegBin(4, 0.212) 

Intervention   
Probability of 
diagnosis 

δτ )( 211 bbe −−− τ  
with bi = 0.5, b2 = 0 

(b2 = 6 for first index 
case) 

Time needed to trace 
contact 

r(i) 1 day for i = 1, 
3 days for i = 2 

(3 days for both rings 
for first index case) 

Time window during 
which vaccination is 
effective 

w 4 days 
 

Vaccination coverage c(i) 0.95 for i = 1, 
0.5 for i = 2 

(0.5 for both rings for 
first index case) 
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Results

Baseline Parameter Set
An epidemic starting with one index case in a com-

pletely susceptible population without intervention grows
exponentially, if it survives early extinction. The large
range of possible courses of the epidemic reflects the sto-
chastic variability (Figure 1D). If the intervention does
not succeed in reducing the effective reproduction number
Rυ to below 1, the epidemic will continue to grow expo-
nentially, albeit at a lower rate. For example, if diagnosed
infectious persons are isolated, but no ring vaccination is
performed, the effective reproduction number is Rυ=1.65
and the epidemic cannot be contained.

If the intervention succeeds in reducing the effective
reproduction number Rυ to <1, the size of successive gen-
erations of infected persons declines. For the parameter
values of the baseline scenario given in the Table, we have
Rυ = 0.67 and 94.4% of all transmissions take place in the
casual contact ring. The epidemic can then be contained
and the virus eradicated. In Figure 3A and B, the distribu-
tion of the total number of infected persons (excluding
those who were vaccinated in time to prevent sympto-
matic infection) and of the time until recovery of the last
infected patient is shown for 500 simulation runs with the
baseline parameters (Table). The time until the epidemic
is over is quite variable: on average it takes 82 days, in
some cases it takes up to 1 year (range 22–334 days).
During this time, an average of 209 contacts are vaccinat-
ed (range 6–1,038 contacts), with a mean number of 13.5
vaccinated contacts per infected case. On average, 15 per-
sons are infected (range 1–123 persons), if we exclude
those infected persons who were vaccinated on time. If we
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Figure 2.The time course of events in the process of transmission
and intervention. The success of intervention is essentially deter-
mined by the time between start of the infectious period and diag-
nosis of the index case, and the time between the start of contact
tracing and the vaccination of the contact. 

Figure 3. The distribution of A, the total number of infected persons
excluding those infected contacts who were vaccinated on time to
prevent disease, and B, the time to extinction for 500 simulation
runs with the baseline intervention parameter values and a basic
reproduction number of 5.23. For a basic reproduction number of
10.46 and an increase of the vaccination coverage in the casual
contact ring to 80% in C, the distribution of the total number of
infected persons, and in D, the distribution of the time to extinction,
is shown for 500 simulation runs. 

Time to extinction



include the infected contacts who were vaccinated on
time, the mean number of persons infected is 29 (range
1–200 contacts). On average, 5 persons die of smallpox
(range 0–30 persons). If monitoring of contacts is added
to the intervention (incorporated in the model by assum-
ing that w = 15), the effective reproduction number can be
further reduced to 0.53. The average number of infected
persons drops to 6 (range 1–43 persons), excluding the
identified infected contacts who are vaccinated or moni-
tored and to 14 (range 1–96 persons), including the vacci-
nated and monitored infected contacts. The mean time to
extinction is now 53 days (range 20–288 days). The frac-
tion of transmissions taking place in the casual contact
ring is slightly lower. at 93.7%. 

To contrast the baseline scenario, in Figure 3C and D
we show results for the case that R0 = 10.46, i.e., twice the
value of baseline scenario. To contain the epidemic, we
now assumed that 80% of all contacts in the casual con-
tact ring were vaccinated in time. The effective reproduc-
tion number Rυ was 0.91. A fraction of 91.8% of
transmissions took place in the casual contact ring. The
mean number of infected persons during the epidemic was
101 (range 2–663), excluding the infected contacts vacci-
nated in time and 340 (range 2–2,175 persons) including
those contacts. The mean time to extinction was 229 days
(range 32 to >900 days). The time to extinction can be
very long when Rυ is near 1 because the epidemic can
flare up again when a case by chance produces many sec-
ondary infections. A similar picture would result if, in
addition to vaccinating casual contacts with a coverage of
55%, those contacts are monitored. The effective repro-
duction number is then 0.96; 93.0% of transmissions are
in the casual contact ring.

Sensitivity Analysis

Initial Phase of Epidemic
The initial phase of the epidemic (time before discov-

ery of the first case) is determined by the number of index
patients that start the epidemic outbreak and by the time it
takes to diagnose the first case. We varied those two vari-
ables separately while assuming that after diagnosis inter-
vention took place within the parameters defined in the
Table, i.e., with an Rυ of 0.67 (Figure 4). While the num-
ber of cases increases almost linearly with the number of
index cases, the dependency on the time to diagnosis
shows the influence of the variable infectiousness during
the infectious period. In the beginning, when infectious-
ness is high, the number of infected persons increases rap-
idly. Another rise occurs toward the end of the index
patient’s infectious period because the second-generation
patients become infectious and produce the third genera-
tion of infected persons. Once the second generation of
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Figure 4. Results for the sensitivity analyses. The total number of
infected persons (excluding successfully vaccinated infected con-
tacts) depends on A, the number of index cases starting the epi-
demic, and B, the day of the infectious period after which the
diagnosis of the first case occurs. The time to extinction is shown
for C, different numbers of index cases, and D, the day of the
infectious period after which the diagnosis of the first case occurs.
The quarntiles are taken pointwise for 500 simulation runs.



infected persons has the opportunity to disseminate the
infection further, the range of possible outcomes increases
greatly (range 6–221 infected persons). A similar picture
emerges for the time needed to extinguish the outbreak.
The duration of the outbreak increases when diagnosis is
delayed during the first few days of infectiousness, then
stays on a stable level, and finally increases again when
diagnosis is delayed towards the end of the infectious peri-
od (Figure 4D). Therefore, diagnosing the first index case
before the second generation of infected persons start trans-
mitting the virus is important. If diagnosing the first case at
the beginning of its infectious period is possible, the num-
ber of cases during the epidemic can be kept at a low level. 

Effectiveness of Response
Among others, the value of R0 determines whether ring

vaccination as defined above can contain an epidemic or
not. As the value of R0 is uncertain (2,9,19), we studied Rυ
as a function of R0 (Figure 5). In Figure 5A, an interven-
tion without monitoring of contacts is considered with var-
ious assumptions on how long tracing and vaccinating
casual contacts take. In this case, ring vaccination can con-
tain the epidemic if R0 is <7, and contacts can be traced
within 3 days. In Figure 5B, monitoring of contacts is
added to the intervention. In that instance, the epidemic
can be contained up to an R0 of 10. In Figure 5A and B, we
assumed that 50% of all casual contacts can be identified
and vaccinated or monitored.

In Figure 6, we show how the critical vaccination cov-
erage needed to control the epidemic depends on R0, or,
more specifically, on the average number of daily contacts
(Figure 6C). In addition, we varied the baseline assump-
tion about the time to diagnosis by shifting the probability
of being diagnosed by n days towards a later time in the
symptomatic period. In Figure 6A, without monitoring of
vaccinated contacts, a shift by 1 day greatly increases the
coverage needed to contain the epidemic. If diagnosis is
delayed by >1 day, the chances of controlling the epidem-
ic diminish greatly. If vaccinated contacts are monitored,
the situation improves (Figure 6B), and a high vaccination
coverage in the casual contact ring ensures that the epi-
demic stays under control. 

Time to Extinction Depending on Rυυ

Finally, we looked at how differences in intervention
effectiveness influence the duration of the epidemic and
the cumulative number of infected persons. The effective
reproduction number Rυ was varied by decreasing the vac-
cination coverage in the casual contact ring stepwise to
0.1. The effective reproduction number increased up to
0.96 (starting from the baseline value of 0.67). Figures 7A
and b show how the cumulative number of infected per-
sons and the time to extinction increase with increasing Rυ.

The mean time until extinction approximately doubles to
almost 200 days, and the range of possible outcomes
increases with maximum possible durations of >2 years.
The mean number of infected persons increases by a factor
of 5, and the range of possible outcomes increases such
that epidemics with several hundreds of infected persons
are possible. Hence, if Rυ is slightly <1, the epidemic
might take a long time to control, and the number of per-
sons who become infected and die might be high.

Discussion
Our simulation results show that a smallpox epidemic

starting from a small number of index cases can be con-
tained by ring vaccination provided the intervention meas-
ures are very effective. The time to diagnosis has proven to
be an essential and sensitive parameter in determining the
intervention effectiveness. The speed of diagnosis is less
essential if identified contacts are isolated to prevent them
from transmitting further if their vaccination fails. The
time window limiting the success of vaccination then loses
its importance for determining the effectiveness of inter-
vention. The time to diagnosis of cases and the fraction of
contacts found by contact tracing are then the key parame-
ters. Quick contact tracing would be even more essential if
substantial transmission would take place during the pro-
dromal period of infection as is assumed by some authors
(11,12). 

Some limitations of our modeling approach should be
kept in mind. First, we only consider epidemics that are
started by a small number of index cases. The branching
process approach does not allow for overlapping rings of
contact, but we implicitly include such an effect by vary-
ing the effective transmission probability such that the dis-
tribution of transmissions over the infectious period agrees
with empiric findings (8). In other words, the decreasing
probability of contacting new susceptible persons during
the infectious period is incorporated in the decreasing
transmission probability per contact. For larger numbers of
index cases, our approach can be viewed as a worst-case
scenario. Second, we assume that the population is com-
pletely susceptible, i.e., no residual immunity from vacci-
nation in the pre-eradication era exists. This lack of
immunity means that if previously vaccinated persons can-
not become infectious to others, our results are too pes-
simistic, whereas if they become infectious with mitigated
symptoms, our results might be too optimistic. 

In the recent literature, other models, both stochastic
and deterministic, of smallpox outbreaks have been intro-
duced to analyze the effects of ring and mass vaccination
(8,10–14). On the basis of a low estimate for R0, Meltzer et
al. (8) concluded that even quarantine alone can control the
epidemic, as can vaccination alone, if the transmission rate
is reduced sufficiently. However, the model does not allow
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analysis of how intervention parameters determine the
reduction of the transmission rate. On the other hand,
Kaplan et al. (10) conclude that with a large number of ini-
tial cases, mass vaccination will prevent more deaths than
will a vaccination strategy based on contact tracing. Those
authors explicitly take into account the limited resources
available for tracing and vaccinating contacts, a limitation
that is an important factor in large outbreaks. Also, they
assume that infectivity is high during the prodromal phase.
As in the model by Kaplan et al. (10), our model takes into
account that the intervals between infection and diagnosis
of an index case, and between diagnosis of an index case
and tracing of the contact, may exceed the time window in
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Figure 5. The effective reproduction number Rυ, that determines
the success of intervention is shown as a function of the basic
reproduction number R0 for a vaccination coverage of 50% in the
casual contact ring. In A, contacts are not monitored after vaccina-
tion; in B, all identified contacts are isolated and cause not further
transmission. The different lines in A are for different assumptions
about how long it takes to trace and vaccinate those contacts. In
B, it does not make a difference whether it takes 1, 2, or 3 days to
find the contacts. If R0 is 5, the intervention will be successful in
both cases, if R0 is 10, 50% coverage is no longer sufficient to curb
the epidemic. 

Figure 6. Here the critical vaccination coverage in the casual con-
tact ring is shown as a function of the basic reproduction number
R0 for different assumptions about the time it takes to diagnose
infectious persons. A, for the baseline assumption, that diagnosis
is very quick after the beginning of the infectious period, a low cov-
erage is sufficient if R0 is 5, but for R0 around 10 the coverage has
to be at least 70% for the intervention to be successful. If the prob-
ability of being diagnosed shifts to later days of the infectious peri-
od, the situation quickly gets out of control and vaccination can no
longer curb the epidemic. In B, the same is shown with the differ-
ence that here we assume that vaccinated contacts are success-
fully monitored such that they can no longer produce any
secondary infections, even if their vaccination was too late to pre-
vent them from becoming infectious. In this case a later diagnosis
is not that influential, but nevertheless, if R0 is 10, the vaccination
coverage (or the percentage of contacts identified and monitored)
must be at least 50% to guarantee success. In C, the critical cov-
erage of the casual contact ring is shown as a function of the aver-
age number of contacts per day, again for the situation where
vaccination is combined with monitoring of contacts. The average
number of contacts was varied by varying the number of daily
casual contacts. The effect is similar to that of varying R0 through
the transmission probability per contact as shown in B.



which vaccination has to take place. This window limits
the possible effectiveness of contact vaccination—a phe-
nomenon termed “race to trace” by Kaplan et al. While the
model by Kaplan et al. is based on differential equations
with exponentially distributed sojourn times in different
compartments, our model is a stochastic model that is able
to deal with more realistic distributions for sojourn times
in different disease states. Also, our model can provide
estimates for variability in outcomes (Discussion in [25]). 

In a study by Halloran et al. (11), a stochastic model for
smallpox outbreaks in small, structured communities is
described. In some respects the model is similar to ours,
namely, that there is a distinction between household con-
tacts and other contacts in the community with differing
transmission probabilities. The values of most biologic
parameters are choices similar to ours, with the exception
of Halloran’s assumption that persons are highly infectious
during the prodromal phase. An important difference
between the models is the natural limitation of the number
of infected persons in any epidemic attributable to the
rather small community size in Halloran’s model. The non-
linear effects of saturation play a rather large role in deter-
mining the outbreak size, especially for less effective
intervention measures. Also, Halloran’s model seems to be
too complex to derive an explicit formula for the basic
reproduction number R0, and thus makes sensitivity analy-
sis of the results based on that quantity much more tedious.
One of the main differences, however, is the way that vac-
cination is incorporated into the model does not allow
investigation of the effects of those parameters that large-
ly determine the success of intervention, namely the time
to diagnosis of new cases and the time needed to trace con-
tacts. In a small closed community as the one described in
the model, tracing of contacts is not that difficult, but in
modern society with its increasing mobility the tracing of
casual contacts can pose a big problem. 

The main difference between the modeling approach of
Bozette et al. (12,13) and our model is that in Bozette’s R0
and Rυ are set to prescribed values, while in our model
those numbers can be derived from measurable quantities
inherent to the transmission and intervention process. In
comparison to the estimate of Rυ of 0.53 in our baseline
scenario with vaccination and monitoring of contacts,
Bozette et al. assume a much lower value of 0.1. So com-
pared to our results, their results are rather optimistic, but
they cannot relate the assumed value of Rυ to R0 or to
parameters describing the process of contact tracing and
vaccination. 

Finally, Eichner (14) recently published a modeling
study that uses a simulation model to assess the effective-
ness of case isolation and contact tracing. Modeling
approach and choice of parameter values resemble our

approach, but the intervention is modeled in a more phe-
nomenologic way by defining the outcomes of intervention
without explicitly including intervention-related parame-
ters into the model. This does not allow for an explicit cal-
culation of the effective reproduction number based on
intervention parameters as is possible in our approach. 

With respect to preparing for a smallpox outbreak,
alertness and ability to diagnose quickly are important.
Physicians and nurses need to be educated and the public
needs to be more aware. Also, since we know little about
the timing and effectiveness of identifying infectious per-
sons and their contacts in case of a bioterror attack, obtain-
ing more empirical information about contact patterns and
contact tracing will be helpful. Recently, some useful data
about contact patterns have been collected during severe
acute respiratory syndrome outbreaks, but a more system-
atic investigation of contact tracing is advisable.
Considering the uncertainties connected to all parameter
values, we conclude that any contingency plan for use of
ring vaccination must also identify the criteria under which
switching to large-scale mass vaccination is justified. 
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Figure 7. A, the cumulative number of infected persons (excluding
successfully vaccinated infected contacts), and B, the time to
extinction are shown for various values of the effective reproduc-
tion number Rυ. The quantiles are taken pointwise for 500 simula-
tion runs.
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Appendix
We used a stochastic model to describe the number of infect-

ed persons following the introduction of one or more index cases.
The model simulates a discrete time-branching process.

Formal Model Definition
By Et,τ we denote the number of persons infected at time t-τ

who are still latent at time t, 1 < τ < DE. By It,τ we denote the
number of persons who became symptomatic at time t-τ and are
not yet in isolation at time t, 1 < τ < DI. By Qt,τ we denote the
number of persons who became symptomatic at time t-τ and are
in isolation at time t, 1 < τ < DI. 

Sτ denotes a Bernoulli distributed random variable with mean
γτ, 1 < τ < DE , where γτ is the probability to move to the infec-
tious state on day τ of the latent period. DE is the maximum dura-
tion of the latent period. 

Tτ denotes a Bernoulli distributed random variable with mean
pτ, 1 < τ < DI , where pτ is the transmission probability per con-
tact on day τ of the infectious period. DI is the duration of the
infectious period. We assume that pτ can be well described by the
functional form pτ=a1τe(–a

2
τ) with a1, a2 > 0. 

Cτ
(1) denotes a Poissson distributed random variable with

mean µτ
(1) , 1 < τ < DI describing the number of contacts per day

in the close contact ring. 
Cτ

(2) denotes a random variable with a negative binomial dis-
tribution with parameters nτ and q, 1 < τ < DI describing  the
number of contacts per day in the casual contact ring. The mean
number of contacts per day in the casual contact ring is

and the standard deviation is .
The transition from being undiagnosed infectious to isolation

depends on the probability of diagnosis ∆τ on day τ after the start
of the infectious period. ∆τ is a Bernoulli distributed random vari-
able with parameter δτ, τ=1,...,DI. 

Vτ
(1) and Vτ

(2) are Bernoulli distributed random variables with
parameters υτ

(1) and υτ
(1), respectively, with τ=1,...,DI. They

describe the probability that a contact in ring 1 or 2 , respective-
ly, will be effectively vaccinated within the time window of 4
days after infection. The subscript τ refers to day of the infectious
period of the index case at the moment of transmission. The vac-
cination probabilities υτ

(i) for i=1,2 depend on the probability that

the index case is diagnosed and on the vaccination coverage as
follows. The probability an infectious person who has
transmitted to a contact on day τ of the infectious period is diag-
nosed on day τ+j can be computed as

for j=1,..., DI-τ+1.

The probability for the infected contact to be vaccinated in time
depends on the number of days w after infection that vaccination
can still be effective, the number of days r(i) that are needed for
tracing the contact, and the coverage c(i) (the fraction of contacts
in ring i that are effectively immunized) for i=1,2. Then we get 

for i=1,2.

To describe the probability of diagnosis per day of the infectious
period we use the functional form

for τ > b2, and δτ = 0 for τ < b2

with b1 > 0, and an integer b2 between 0 and DI. In the simula-
tions different values for those parameters are chosen for the first
index patient, who starts the epidemic, and later cases assuming
that it takes longer to diagnose the first case as there is not yet
that much alertness of the public health system. Also, the time
needed to find contacts and the vaccination coverage may vary
between the first index case and later cases. 

The transitions through the different stages in time is
described by the system of difference equations.

The inflow of new latent and symptomatically infected persons is
given by 

The initial conditions for the case that the epidemic is started
by one infected index case entering the population at the begin-
ning of his latent period are given by

E0,1 = 1,
E0,τ = 0 for τ = 2,…, DE ,
I0,τ = 0 for τ = 1,…, DI , and 
Q0,τ = 0 for τ = 1,…, DI .

j,τδ

ττττσ qqn /)1( −=ττττµ qqn /)1()2( −=
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At the end of the infectious period an infected patient either
recovers and becomes immune or dies. Death occurs in a fraction
f of all cases, i.e., f denotes the case fatality. This implies that the
number of deaths Mt+1 at time t+1 is given by

,

where Z is a Bernoulli distributed random variable with parame-
ter f , the case-fatality rate. The cumulative mortality from the
start of the epidemic up to time t is given by   .

The model was implemented and run in Mathematica 4.2.
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Appendix

We used a stochastic model to describe the number of infected persons following the introduction of one or more index cases. The model
simulates a discrete time-branching process.

Formal Model Definition

By Et,t we denote the number of persons infected at time t-t who are still latent at time t, 1 < t < DE. By It,t we denote the number of persons who
became symptomatic at time t-t and are not yet in isolation at time t, 1 < t < DI. By Qt,t we denote the number of persons who became
symptomatic at time t-t and are in isolation at time t, 1 < t < DI.

St denotes a Bernoulli distributed random variable with mean ?t, 1 < t < DE, where ?t is the probability to move to the infectious state on day t of
the latent period. DE is the maximum duration of the latent period.

Tt denotes a Bernoulli distributed random variable with mean pt, 1 < t < DI, where pt is the transmission probability per contact on day t of the

infectious period. DI is the duration of the infectious period. We assume that pt can be well described by the functional form with a1,
a2 > 0.

Ct
(1) denotes a Poissson distributed random variable with mean , 1 < t < DI describing the number of contacts per day in the close contact

ring.

Ct
(2) denotes a random variable with a negative binomial distribution with parameters nt and qt, 1 < t < DI describing the number of contacts per

day in the casual contact ring. The mean number of contacts per day in the casual contact ring is  and the standard deviation is 

.

The transition from being undiagnosed infectious to isolation depends on the probability of diagnosis ?t on day t after the start of the infectious
period. ?t is a Bernoulli distributed random variable with parameter dt, t=1,...,DI.

Vt
(1) and Vt

(2) are Bernoulli distributed random variables with parameters ?t
(1) and ?t

(1), respectively, with t=1,..., DI. They describe the
probability that a contact in ring 1 or 2 , respectively, will be effectively vaccinated within the time window of 4 days after infection. The subscript
t refers to day of the infectious period of the index case at the moment of transmission. The vaccination probabilities ?t

(i) for i=1,2 depend on the

probability that the index case is diagnosed and on the vaccination coverage as follows. The probability  an infectious person who has
transmitted to a contact on day t of the infectious period is diagnosed on day t+j can be computed as

 for j=1,..., DI-t+1.
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The probability for the infected contact to be vaccinated in time depends on the number of days w after infection that vaccination can still be
effective, the number of days r(i) that are needed for tracing the contact, and the coverage c(i) (the fraction of contacts in ring i that are effectively
immunized) for i=1,2. Then we get

 for i=1,2.

To describe the probability of diagnosis per day of the infectious period we use the functional form

 for t > b2, and for t < b2

with b1 > 0, and an integer b2 between 0 and DI. In the simulations different values for those parameters are chosen for the first index patient, who
starts the epidemic, and later cases assuming that it takes longer to diagnose the first case as there is not yet that much alertness of the public health
system. Also, the time needed to find contacts and the vaccination coverage may vary between the first index case and later cases.

The transitions through the different stages in time is described by the system of difference equations.

   

The inflow of new latent and symptomatically infected persons is given by

The initial conditions for the case that the epidemic is started by one infected index case entering the population at the beginning of his latent
period are given by

E0,1 = 1,

E  = 0 for t = 2,…, D  ,
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0,t E

I0,t = 0 for t = 1,…, DI , and

Q0,t = 0 for t = 1,…, DI .

At the end of the infectious period an infected patient either recovers and becomes immune or dies. Death occurs in a fraction f of all cases, i.e., f
denotes the case fatality. This implies that the number of deaths Mt+1 at time t+1 is given by

,

where Z is a Bernoulli distributed random variable with parameter f , the case-fatality rate. The cumulative mortality from the start of the epidemic

up to time t is given by .

The model was implemented and run in Mathematica 4.2.


